NumPy - 线性代数
NumPy 包包含numpy.linalg
模块,提供线性代数所需的所有功能。 此模块中的一些重要功能如下表所述。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
序号 | 函数及描述 |
---|---|
1. | dot 两个数组的点积 |
2. | vdot 两个向量的点积 |
3. | inner 两个数组的内积 |
4. | matmul 两个数组的矩阵积 |
5. | determinant 数组的行列式 |
6. | solve 求解线性矩阵方程 |
7. | inv 寻找矩阵的乘法逆矩阵 |
numpy.dot()
此函数返回两个数组的点积。 对于二维向量,其等效于矩阵乘法。 对于一维数组,它是向量的内积。 对于 N 维数组,它是a
的最后一个轴上的和与b
的倒数第二个轴的乘积。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
import numpy.matlib
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
np.dot(a,b)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[[37 40]
[85 92]]
要注意点积计算为:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]]
numpy.vdot()
此函数返回两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数id
是多维数组,它会被展开。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print np.vdot(a,b)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
130
注意:1*11 + 2*12 + 3*13 + 4*14 = 130
。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
numpy.inner()
此函数返回一维数组的向量内积。 对于更高的维度,它返回最后一个轴上的和的乘积。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
import numpy as np
print np.inner(np.array([1,2,3]),np.array([0,1,0]))
# 等价于 1*0+2*1+3*0
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
2
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
# 多维数组示例
import numpy as np
a = np.array([[1,2], [3,4]])
print '数组 a:'
print a
b = np.array([[11, 12], [13, 14]])
print '数组 b:'
print b
print '内积:'
print np.inner(a,b)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
数组 a:
[[1 2]
[3 4]]
数组 b:
[[11 12]
[13 14]]
内积:
[[35 41]
[81 95]]
上面的例子中,内积计算如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14
numpy.matmul
numpy.matmul()
函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
# 对于二维数组,它就是矩阵乘法
import numpy.matlib
import numpy as np
a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print np.matmul(a,b)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[[4 1]
[2 2]]
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
# 二维和一维运算
import numpy.matlib
import numpy as np
a = [[1,0],[0,1]]
b = [1,2]
print np.matmul(a,b)
print np.matmul(b,a)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[1 2]
[1 2]
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
# 维度大于二的数组
import numpy.matlib
import numpy as np
a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print np.matmul(a,b)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[[[2 3]
[6 11]]
[[10 19]
[14 27]]]
numpy.linalg.det()
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
换句话说,对于矩阵[[a,b],[c,d]]
,行列式计算为ad-bc
。 较大的方阵被认为是 2×2 矩阵的组合。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
numpy.linalg.det()
函数计算输入矩阵的行列式。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
import numpy as np
a = np.array([[1,2], [3,4]])
print np.linalg.det(a)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
-2.0
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print b
print np.linalg.det(b)
print 6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[[ 6 1 1]
[ 4 -2 5]
[ 2 8 7]]
-306.0
-306
numpy.linalg.solve()
numpy.linalg.solve()
函数给出了矩阵形式的线性方程的解。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
考虑以下线性方程:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27
可以使用矩阵表示为:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
如果矩阵成为A
、X
和B
,方程变为:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
AX = B
或文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
X = A^(-1)B
numpy.linalg.inv()
我们使用numpy.linalg.inv()
函数来计算矩阵的逆。 矩阵的逆是这样的,如果它乘以原始矩阵,则得到单位矩阵。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
import numpy as np
x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print x
print y
print np.dot(x,y)
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
[[1 2]
[3 4]]
[[-2. 1. ]
[ 1.5 -0.5]]
[[ 1.00000000e+00 1.11022302e-16]
[ 0.00000000e+00 1.00000000e+00]]
例子文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
现在让我们在示例中创建一个矩阵A的逆。文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
import numpy as np
a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
print '数组 a:'
print a
ainv = np.linalg.inv(a)
print 'a 的逆:'
print ainv
print '矩阵 b:'
b = np.array([[6],[-4],[27]])
print b
print '计算:A^(-1)B:'
x = np.linalg.solve(a,b)
print x
# 这就是线性方向 x = 5, y = 3, z = -2 的解
输出如下:文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
数组 a:
[[ 1 1 1]
[ 0 2 5]
[ 2 5 -1]]
a 的逆:
[[ 1.28571429 -0.28571429 -0.14285714]
[-0.47619048 0.14285714 0.23809524]
[ 0.19047619 0.14285714 -0.0952381 ]]
矩阵 b:
[[ 6]
[-4]
[27]]
计算:A^(-1)B:
[[ 5.]
[ 3.]
[-2.]]
结果也可以使用下列函数获取文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html
x = np.dot(ainv,b)
文章源自菜鸟学院-https://www.cainiaoxueyuan.com/bc/5894.html